On Source-Term Parameter Estimation for Linear Advection-Diffusion Equations with Uncertain Coefficients

نویسندگان

  • Sergiy Zhuk
  • Tigran T. Tchrakian
  • Stephen Moore
  • Rodrigo H. Ordóñez-Hurtado
  • Robert Shorten
چکیده

In this paper, we propose an algorithm estimating parameters of a source term of a linear advection-diffusion equation with an uncertain advection-velocity field. First, we apply a minimax state estimation technique order to reduce uncertainty introduced by the coefficients. Then we design a source localization algoritm which uses the state estimator as a model and estimates the parameters of the source term given incomplete and noisy data. The principal novelty of the proposed algorithm is in that it is robust with respect to the uncertainty in advection coefficients, i.e. wind fields. The localization algorithm is sequential, that is it updates both state estimate and source estimate once a new observation arrives. To demonstrate the efficacy of the proposed algorithm, we present a numerical example of source localization in two spatial dimensions for the advection-dominated transport of a non-reactive pollutant emanating from a point-source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Robust H_∞ Controller design based on Generalized Dynamic Observer for Uncertain Singular system with Disturbance

This paper presents a robust ∞_H controller design, based on a generalized dynamic observer for uncertain singular systems in the presence of disturbance. The controller guarantees that the closed loop system be admissible. The main advantage of this method is that the uncertainty can be found in the system, the input and the output matrices. Also the generalized dynamic observer is used to est...

متن کامل

A multiscale Eulerian–Lagrangian localized adjoint method for transient advection–diffusion equations with oscillatory coefficients

We develop a multiscale Eulerian–Lagrangian localized adjoint method for transient linear advection– diffusion equations with oscillatory coefficients, which arise in mathematical models for describing flow and transport through heterogeneous porous media, composite material design, and other applications.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016